Fehlerkontrollierte Berechnungen von Problemen der maschinellen Fertigung

Dipl.-Math. Andreas Schröder
Wissenschaftliches Rechnen, Fachbereich Mathematik
Universität Dortmund

Domus-Kolloquium, 10.6.2002

DFG-Projekt:

Simulationsgestützte Offline-Prozeßplanung und -optimierung bei der Fertigung von Freiformflächen.

Teilprojekt 2:

Fehlerkontrollierte Finite-Elemente-Diskretisierungen für maschinelle Fertigungsprozesse.

Inhalt

- 1. Probleme der maschinellen Fertigung
- 2. Fehlerkontrolle, ein allgemeines Konzept
- 3. Differentialgleichungen mit Nebenbedingungen
- 4. Fehlerkontrolle bei Problemen aus der Fertigungstechnik
- 5. Ausblick

Probleme der maschinellen Fertigung Fräsprozesse

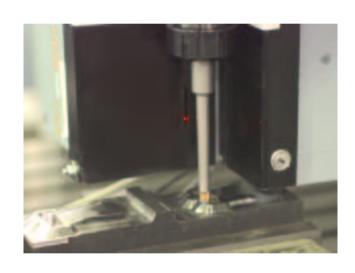


Abbildung 1: Fräserapparatur

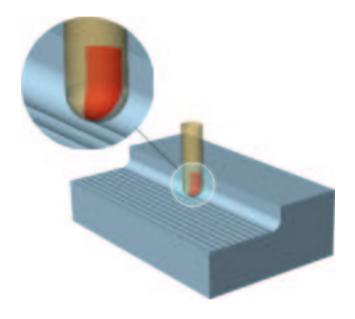


Abbildung 2: Fräserkopf und Werkstück

Schleifprozesse



Abbildung 3: Kontaktrolle, Schleifband und Werkstück

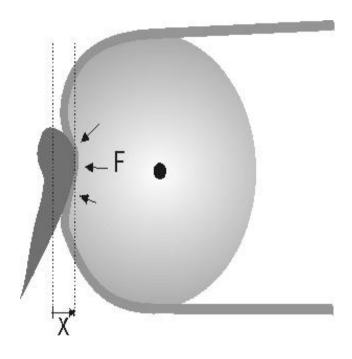


Abbildung 4: Schleifscheibe und Andruckkräfte

Problemstellungen aus der

- Elasto-/Plastizität
- Strömungsmechanik

Mathematische Modelle

Systeme nichtlinearer partieller Differentialgleichungen

$$L(u) = f$$

Formulierung in

- ullet $nichtlineare\ Variationsgleichungen$
- $\bullet \ \ nichtlineare \ \ Variations \underline{un} gleichungen$

Diskretisierung: Finite-Elemente-Methode

Fehlerkontrolle, ein allgemeines Konzept

Klassisch: a-priori Fehlerkontrolle

Modern (seit '75 bzw. '90): a-posteriori Fehlerkontrolle

Ziele:

- a-posteriori Fehlerkontrolle
- als Summe von lokal definierten Fehleranteilen
- für ein beliebiges Fehlermaß

u: Lösung des mathematischen Modells

 u_h : diskrete Finite-Elemente-Lösung

J: Fehlermaß

$$|J(u-u_h)| \le \sum_{T \in \mathbb{T}_h} \eta_T$$

Fehlermaße

- Normen (L_2 -Norm, Energie-Norm)
- Normalspannungen am Rand
- ...

Strategie der gewichteten Fehlerschätzer

 ρ_T : lokale Residuen: $(L(u_h) - f)_T$,

Spannungssprünge: $(\sigma_n^+ - \sigma_n^-)_{\partial T}$

 ω_T : Gewichtsfaktoren bzgl. Fehlermaß

$$\eta_T = \omega_T \rho_T$$

Berechnung von ω_T :

num. Lösen eines dualen, linearen Hilfsproblems

$$(L')^T(u_h)z = J$$
 \Rightarrow Einflußfunktion z bzgl. $J \Rightarrow \omega_T$

$$|J(u-u_h)| \le \sum_{T \in \mathbb{T}_h} \omega_T \rho_T$$

Adaptive Gittergenerierung

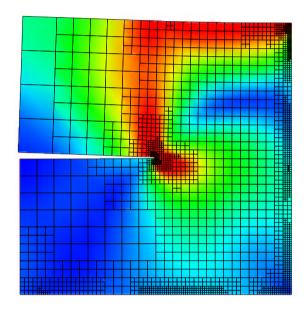


Abbildung 5: Rißöffnung eines belasteten Werkstücks (Suttmeier '96)



Abbildung 6: Aufwandsvergleich: ZZ- u. gewichteter Fehlerschätzer

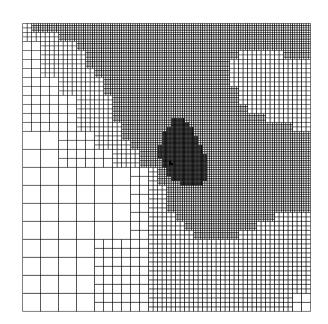


Abbildung 7: Gitter mit ZZ-Fehlerschätzer

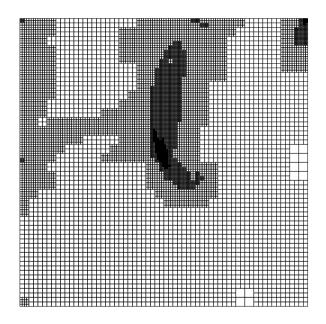


Abbildung 8: Gitter mit gewichtetem Fehlerschätzer

Differentialgleichungen mit Nebenbedingungen

Nebenbedigungen:

- Kontakt- und Hindernisnebenbedigungen
- Fließbedigungen
- Reibung
- ...

Mathematische Sicht:

Variation sungleich ungen

Schwierigkeiten bei der Anwendung gewichteter Fehlerschätzer:

- Formulierung des dualen Hilfsproblems:
 - Hilfsproblem ist auch eine Variationsungleichung
 - Aktive Nebenbedingungen?
- \bullet Hilfsproblem ist nicht linear \Rightarrow höherer numerischer Aufwand

Fehlerkontrolle bei Problemen aus der Fertigungstechnik Fräsprozesse

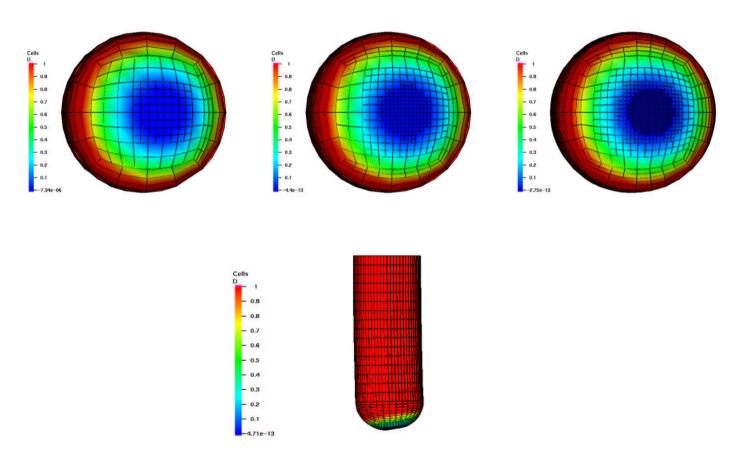
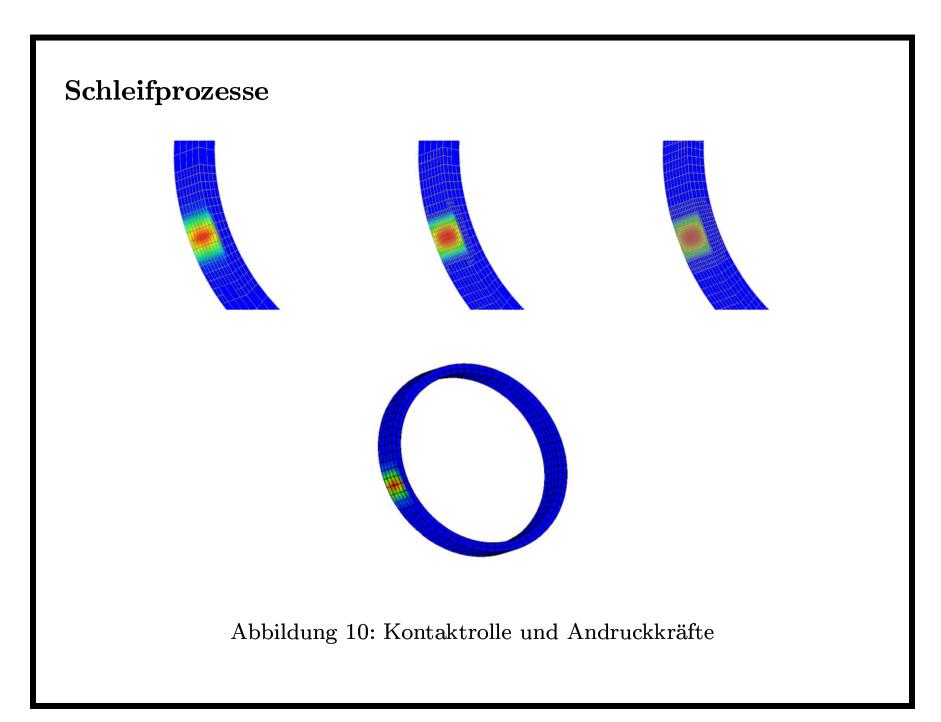



Abbildung 9: Fräserkopf und Andruckkräfte

- 1. Einbringung dynamischer (d.h. zeitabhängiger) Effekte
- 2. Einsatz von hp-Methoden (\Rightarrow exponentielle Konvergenz) d.h. Ordnungs- und Netzsteuerung