

Modellierung und Simulation in der Chemie Vom Molekülcluster zum Protein und darüber hinaus

Arbeitsgruppe Prof. Alfons Geiger Physikalische Chemie, Universität Dortmund

Ab inito Berechnung H-brücken-gebundener molekularer Cluster

ethanol

2,2-dimethyl-3-ethyl-3-pentanol (dmep)

Intermolekulare Schwingungen

Streckschwingung der H-Brücke

 (88 cm^{-1})

Deformationsschwingung der H-Brücke (110 cm⁻¹)

Quantum Cluster Equilibrium (QCE) Modell

F. Weinhold, J. Chem. Phys., 1998, 109, 367-372; 373-384.

NMR chemische Verschiebungen

Molekulardynamik Simulation

Flüssigkeiten sind wechselwirkende Vielteilchen-Systeme.

Verwendung periodischer Randbedingungen in der Simulation.

Metastabiles unterkühltes Wasser

Molekulardynamische Simulation

des ST2-Wassers

bei

<u>330 K</u>

330 K, 270 K, 250 K

Dunkel: Stark verzerrte TetraederHell : Nahezu ideale Tetraeder

Existenzbereich des flüssigen Wassers: Waters no man's land

Sprungdiffusion im unterkühlten Wasser

Dynamik unterkühler Flüssikeiten: Spezialfall "tetrahedral liquids"

"Angell"-Plot des Diffusionskoeffizienten

Tetraedrische Flüssigkeiten nehmen eine Zwischenposition ein

Defektdynamik im überhitzten Eis

Analogie zur Defektdynamik im Eis (hier Simulation) liefert einemögliche Erklärung für die molekulare Dynamik in der superviskosen Flüssigkeit (Bereich: IV)

Wäßrige Elektrolytlösungen

Bevorzugte Assoziation von hydrophoben Teilchen und Anionen (Hofmeister-Serie)

Wäßrige Lösungen:
$c(X^+Y^-) = 1.6 \text{ mol/l}$
c(Xe)=0.8 mol/l
T=300 K, p=1 atm

Film (oben): Blau: Chlorid Rot: Natrium Weiß: Xenon

Phasengleichgewichte:Wasser in Poren

Wasser in hydrophiler Pore

Phasendiagramm des adsorb. Wassers

Vorhersage von Phasengleichgewichten

Perkolationsverhalten von Wasser/THF-Mischungen

Thermotrope Flüssigkristalle

Beispiel einer ferroelektrischen Flüssigkristall (FLC)-Phase

Molekül: MHPOBC; Phase: SmC*; T=375 K, p=1 atm Antiferroelektrisches Verhalten; Sequenz: 12 ns

Orientierung der FLC-Moleküle

Hydratation biologischer Membranen

Voll hydratisierte DPPC (Dipalmitoyl-glycero-phosphatidylcholin)-Doppelschicht Gel-Phase: Hohe Unordnung im Bereich der Alkylketten T=330 K; p=1 atm; Sequenz: 6 ns

Orientierung des Hydrat-Wassers

- α : Dipol
- 0: Molekülebenen-Normale

Orientierung der Kopfgruppen

Atom-Atom-Paarverteilungsfunktionen

Einbau von Anästhetika in die Membran

Hydratationsverhalten von Proteinen

Struktur der hydratisierten S-Nase MD-Simulation der druckinduzierten Denaturierung

Mesoskopische Modelle

Entwicklung vereinfachter "coarse grained" Dissipative Particle Dynamics (DPD)-Modelle

Mit DPD-Modellen ist ein größerer Zeitbereich zugänglich als mittels atomistischer MD. Aber unter Verlußt des atomaren Details.

Mapping der DPD-Parameter

Dank an:

Ralf Ludwig Dietmar Paschek Amelie Rehtanz Ivan Brovchenko Frank Schmauder Ralf Schmelter Nicolai Smolin Sascha Nonn